3.3.2 \(\int \frac {a+b \log (c (d+e x)^n)}{(d+e x) (f+g x)^{3/2}} \, dx\) [202]

Optimal. Leaf size=340 \[ \frac {4 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )}{(e f-d g)^{3/2}}+\frac {2 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )^2}{(e f-d g)^{3/2}}+\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g) \sqrt {f+g x}}-\frac {2 \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g)^{3/2}}-\frac {4 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \log \left (\frac {2}{1-\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}}\right )}{(e f-d g)^{3/2}}-\frac {2 b \sqrt {e} n \text {Li}_2\left (1-\frac {2}{1-\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}}\right )}{(e f-d g)^{3/2}} \]

[Out]

4*b*n*arctanh(e^(1/2)*(g*x+f)^(1/2)/(-d*g+e*f)^(1/2))*e^(1/2)/(-d*g+e*f)^(3/2)+2*b*n*arctanh(e^(1/2)*(g*x+f)^(
1/2)/(-d*g+e*f)^(1/2))^2*e^(1/2)/(-d*g+e*f)^(3/2)-2*arctanh(e^(1/2)*(g*x+f)^(1/2)/(-d*g+e*f)^(1/2))*(a+b*ln(c*
(e*x+d)^n))*e^(1/2)/(-d*g+e*f)^(3/2)-4*b*n*arctanh(e^(1/2)*(g*x+f)^(1/2)/(-d*g+e*f)^(1/2))*ln(2/(1-e^(1/2)*(g*
x+f)^(1/2)/(-d*g+e*f)^(1/2)))*e^(1/2)/(-d*g+e*f)^(3/2)-2*b*n*polylog(2,1-2/(1-e^(1/2)*(g*x+f)^(1/2)/(-d*g+e*f)
^(1/2)))*e^(1/2)/(-d*g+e*f)^(3/2)+2*(a+b*ln(c*(e*x+d)^n))/(-d*g+e*f)/(g*x+f)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.74, antiderivative size = 340, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.419, Rules used = {2458, 2389, 65, 214, 2390, 12, 1601, 6873, 6131, 6055, 2449, 2352, 2356} \begin {gather*} -\frac {2 b \sqrt {e} n \text {PolyLog}\left (2,1-\frac {2}{1-\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}}\right )}{(e f-d g)^{3/2}}+\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{\sqrt {f+g x} (e f-d g)}-\frac {2 \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g)^{3/2}}+\frac {2 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )^2}{(e f-d g)^{3/2}}+\frac {4 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )}{(e f-d g)^{3/2}}-\frac {4 b \sqrt {e} n \log \left (\frac {2}{1-\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}}\right ) \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )}{(e f-d g)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Log[c*(d + e*x)^n])/((d + e*x)*(f + g*x)^(3/2)),x]

[Out]

(4*b*Sqrt[e]*n*ArcTanh[(Sqrt[e]*Sqrt[f + g*x])/Sqrt[e*f - d*g]])/(e*f - d*g)^(3/2) + (2*b*Sqrt[e]*n*ArcTanh[(S
qrt[e]*Sqrt[f + g*x])/Sqrt[e*f - d*g]]^2)/(e*f - d*g)^(3/2) + (2*(a + b*Log[c*(d + e*x)^n]))/((e*f - d*g)*Sqrt
[f + g*x]) - (2*Sqrt[e]*ArcTanh[(Sqrt[e]*Sqrt[f + g*x])/Sqrt[e*f - d*g]]*(a + b*Log[c*(d + e*x)^n]))/(e*f - d*
g)^(3/2) - (4*b*Sqrt[e]*n*ArcTanh[(Sqrt[e]*Sqrt[f + g*x])/Sqrt[e*f - d*g]]*Log[2/(1 - (Sqrt[e]*Sqrt[f + g*x])/
Sqrt[e*f - d*g])])/(e*f - d*g)^(3/2) - (2*b*Sqrt[e]*n*PolyLog[2, 1 - 2/(1 - (Sqrt[e]*Sqrt[f + g*x])/Sqrt[e*f -
 d*g])])/(e*f - d*g)^(3/2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 1601

Int[(Pp_)/(Qq_), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[Coeff[Pp, x, p]*(Log[RemoveConte
nt[Qq, x]]/(q*Coeff[Qq, x, q])), x] /; EqQ[p, q - 1] && EqQ[Pp, Simplify[(Coeff[Pp, x, p]/(q*Coeff[Qq, x, q]))
*D[Qq, x]]]] /; PolyQ[Pp, x] && PolyQ[Qq, x]

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2356

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)
*((a + b*Log[c*x^n])^p/(e*(q + 1))), x] - Dist[b*n*(p/(e*(q + 1))), Int[((d + e*x)^(q + 1)*(a + b*Log[c*x^n])^
(p - 1))/x, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && GtQ[p, 0] && NeQ[q, -1] && (EqQ[p, 1] || (Integers
Q[2*p, 2*q] &&  !IGtQ[q, 0]) || (EqQ[p, 2] && NeQ[q, 1]))

Rule 2389

Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_))/(x_), x_Symbol] :> Dist[1/d, Int[(d
 + e*x)^(q + 1)*((a + b*Log[c*x^n])^p/x), x], x] - Dist[e/d, Int[(d + e*x)^q*(a + b*Log[c*x^n])^p, x], x] /; F
reeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && LtQ[q, -1] && IntegerQ[2*q]

Rule 2390

Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.))/(x_), x_Symbol] :> With[{u = IntHi
de[(d + e*x^r)^q/x, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[Dist[1/x, u, x], x], x]] /; FreeQ[{a, b
, c, d, e, n, r}, x] && IntegerQ[q - 1/2]

Rule 2449

Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> Dist[-e/g, Subst[Int[Log[2*d*x]/(1 - 2*
d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]

Rule 2458

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + (g_.)*(x_))^(q_.)*((h_.) + (i_.)*(x_))
^(r_.), x_Symbol] :> Dist[1/e, Subst[Int[(g*(x/e))^q*((e*h - d*i)/e + i*(x/e))^r*(a + b*Log[c*x^n])^p, x], x,
d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n, p, q, r}, x] && EqQ[e*f - d*g, 0] && (IGtQ[p, 0] || IGtQ[
r, 0]) && IntegerQ[2*r]

Rule 6055

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTanh[c*x])^p)
*(Log[2/(1 + e*(x/d))]/e), x] + Dist[b*c*(p/e), Int[(a + b*ArcTanh[c*x])^(p - 1)*(Log[2/(1 + e*(x/d))]/(1 - c^
2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 6131

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*e*(p + 1)), x] + Dist[1/(c*d), Int[(a + b*ArcTanh[c*x])^p/(1 - c*x), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]

Rule 6873

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rubi steps

\begin {align*} \int \frac {a+b \log \left (c (d+e x)^n\right )}{(d+e x) (f+g x)^{3/2}} \, dx &=\frac {\text {Subst}\left (\int \frac {a+b \log \left (c x^n\right )}{x \left (\frac {e f-d g}{e}+\frac {g x}{e}\right )^{3/2}} \, dx,x,d+e x\right )}{e}\\ &=\frac {\text {Subst}\left (\int \frac {a+b \log \left (c x^n\right )}{x \sqrt {\frac {e f-d g}{e}+\frac {g x}{e}}} \, dx,x,d+e x\right )}{e f-d g}-\frac {g \text {Subst}\left (\int \frac {a+b \log \left (c x^n\right )}{\left (\frac {e f-d g}{e}+\frac {g x}{e}\right )^{3/2}} \, dx,x,d+e x\right )}{e (e f-d g)}\\ &=\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g) \sqrt {f+g x}}-\frac {2 \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g)^{3/2}}-\frac {(b n) \text {Subst}\left (\int -\frac {2 \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f-\frac {d g}{e}+\frac {g x}{e}}}{\sqrt {e f-d g}}\right )}{\sqrt {e f-d g} x} \, dx,x,d+e x\right )}{e f-d g}-\frac {(2 b n) \text {Subst}\left (\int \frac {1}{x \sqrt {\frac {e f-d g}{e}+\frac {g x}{e}}} \, dx,x,d+e x\right )}{e f-d g}\\ &=\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g) \sqrt {f+g x}}-\frac {2 \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g)^{3/2}}+\frac {\left (2 b \sqrt {e} n\right ) \text {Subst}\left (\int \frac {\tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f-\frac {d g}{e}+\frac {g x}{e}}}{\sqrt {e f-d g}}\right )}{x} \, dx,x,d+e x\right )}{(e f-d g)^{3/2}}-\frac {(4 b e n) \text {Subst}\left (\int \frac {1}{-\frac {e f-d g}{g}+\frac {e x^2}{g}} \, dx,x,\sqrt {f+g x}\right )}{g (e f-d g)}\\ &=\frac {4 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )}{(e f-d g)^{3/2}}+\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g) \sqrt {f+g x}}-\frac {2 \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g)^{3/2}}+\frac {\left (4 b e^{3/2} n\right ) \text {Subst}\left (\int \frac {x \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {e f-d g}}\right )}{d g+e \left (-f+x^2\right )} \, dx,x,\sqrt {f+g x}\right )}{(e f-d g)^{3/2}}\\ &=\frac {4 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )}{(e f-d g)^{3/2}}+\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g) \sqrt {f+g x}}-\frac {2 \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g)^{3/2}}+\frac {\left (4 b e^{3/2} n\right ) \text {Subst}\left (\int \frac {x \tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {e f-d g}}\right )}{-e f+d g+e x^2} \, dx,x,\sqrt {f+g x}\right )}{(e f-d g)^{3/2}}\\ &=\frac {4 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )}{(e f-d g)^{3/2}}+\frac {2 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )^2}{(e f-d g)^{3/2}}+\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g) \sqrt {f+g x}}-\frac {2 \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g)^{3/2}}-\frac {(4 b e n) \text {Subst}\left (\int \frac {\tanh ^{-1}\left (\frac {\sqrt {e} x}{\sqrt {e f-d g}}\right )}{1-\frac {\sqrt {e} x}{\sqrt {e f-d g}}} \, dx,x,\sqrt {f+g x}\right )}{(e f-d g)^2}\\ &=\frac {4 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )}{(e f-d g)^{3/2}}+\frac {2 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )^2}{(e f-d g)^{3/2}}+\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g) \sqrt {f+g x}}-\frac {2 \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g)^{3/2}}-\frac {4 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \log \left (\frac {2}{1-\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}}\right )}{(e f-d g)^{3/2}}+\frac {(4 b e n) \text {Subst}\left (\int \frac {\log \left (\frac {2}{1-\frac {\sqrt {e} x}{\sqrt {e f-d g}}}\right )}{1-\frac {e x^2}{e f-d g}} \, dx,x,\sqrt {f+g x}\right )}{(e f-d g)^2}\\ &=\frac {4 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )}{(e f-d g)^{3/2}}+\frac {2 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )^2}{(e f-d g)^{3/2}}+\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g) \sqrt {f+g x}}-\frac {2 \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g)^{3/2}}-\frac {4 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \log \left (\frac {2}{1-\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}}\right )}{(e f-d g)^{3/2}}-\frac {\left (4 b \sqrt {e} n\right ) \text {Subst}\left (\int \frac {\log (2 x)}{1-2 x} \, dx,x,\frac {1}{1-\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}}\right )}{(e f-d g)^{3/2}}\\ &=\frac {4 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )}{(e f-d g)^{3/2}}+\frac {2 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right )^2}{(e f-d g)^{3/2}}+\frac {2 \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g) \sqrt {f+g x}}-\frac {2 \sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{(e f-d g)^{3/2}}-\frac {4 b \sqrt {e} n \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \log \left (\frac {2}{1-\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}}\right )}{(e f-d g)^{3/2}}-\frac {2 b \sqrt {e} n \text {Li}_2\left (1-\frac {2}{1-\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}}\right )}{(e f-d g)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 2.09, size = 267, normalized size = 0.79 \begin {gather*} \frac {2 \left (-\frac {2 b n \left (\frac {e (f+g x)}{g (d+e x)}\right )^{3/2} \, _3F_2\left (\frac {3}{2},\frac {3}{2},\frac {3}{2};\frac {5}{2},\frac {5}{2};\frac {-e f+d g}{g (d+e x)}\right )}{e}+\frac {9 (f+g x) \left (-b \sqrt {g} n \sqrt {d+e x} \sqrt {\frac {e (f+g x)}{g (d+e x)}} \sinh ^{-1}\left (\frac {\sqrt {e f-d g}}{\sqrt {g} \sqrt {d+e x}}\right ) \log (d+e x)+\sqrt {e f-d g} \left (a+b \log \left (c (d+e x)^n\right )\right )-\sqrt {e} \sqrt {f+g x} \tanh ^{-1}\left (\frac {\sqrt {e} \sqrt {f+g x}}{\sqrt {e f-d g}}\right ) \left (a-b n \log (d+e x)+b \log \left (c (d+e x)^n\right )\right )\right )}{(e f-d g)^{3/2}}\right )}{9 (f+g x)^{3/2}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Log[c*(d + e*x)^n])/((d + e*x)*(f + g*x)^(3/2)),x]

[Out]

(2*((-2*b*n*((e*(f + g*x))/(g*(d + e*x)))^(3/2)*HypergeometricPFQ[{3/2, 3/2, 3/2}, {5/2, 5/2}, (-(e*f) + d*g)/
(g*(d + e*x))])/e + (9*(f + g*x)*(-(b*Sqrt[g]*n*Sqrt[d + e*x]*Sqrt[(e*(f + g*x))/(g*(d + e*x))]*ArcSinh[Sqrt[e
*f - d*g]/(Sqrt[g]*Sqrt[d + e*x])]*Log[d + e*x]) + Sqrt[e*f - d*g]*(a + b*Log[c*(d + e*x)^n]) - Sqrt[e]*Sqrt[f
 + g*x]*ArcTanh[(Sqrt[e]*Sqrt[f + g*x])/Sqrt[e*f - d*g]]*(a - b*n*Log[d + e*x] + b*Log[c*(d + e*x)^n])))/(e*f
- d*g)^(3/2)))/(9*(f + g*x)^(3/2))

________________________________________________________________________________________

Maple [F]
time = 0.29, size = 0, normalized size = 0.00 \[\int \frac {a +b \ln \left (c \left (e x +d \right )^{n}\right )}{\left (e x +d \right ) \left (g x +f \right )^{\frac {3}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*ln(c*(e*x+d)^n))/(e*x+d)/(g*x+f)^(3/2),x)

[Out]

int((a+b*ln(c*(e*x+d)^n))/(e*x+d)/(g*x+f)^(3/2),x)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(e*x+d)^n))/(e*x+d)/(g*x+f)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*%e^2*f-4*%e*d*g>0)', see `as
sume?` for m

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(e*x+d)^n))/(e*x+d)/(g*x+f)^(3/2),x, algorithm="fricas")

[Out]

integral((sqrt(g*x + f)*b*log((x*e + d)^n*c) + sqrt(g*x + f)*a)/(d*g^2*x^2 + 2*d*f*g*x + d*f^2 + (g^2*x^3 + 2*
f*g*x^2 + f^2*x)*e), x)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*ln(c*(e*x+d)**n))/(e*x+d)/(g*x+f)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(e*x+d)^n))/(e*x+d)/(g*x+f)^(3/2),x, algorithm="giac")

[Out]

integrate((b*log((x*e + d)^n*c) + a)/((g*x + f)^(3/2)*(x*e + d)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {a+b\,\ln \left (c\,{\left (d+e\,x\right )}^n\right )}{{\left (f+g\,x\right )}^{3/2}\,\left (d+e\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*log(c*(d + e*x)^n))/((f + g*x)^(3/2)*(d + e*x)),x)

[Out]

int((a + b*log(c*(d + e*x)^n))/((f + g*x)^(3/2)*(d + e*x)), x)

________________________________________________________________________________________